The Behavioral Frontier of Active Investment Management
I’m sure many of you are familiar with the 2011 hit movie Moneyball, featuring superstars Brad Pitt and Jonah Hill. The film, centering around the Oakland Athletics baseball team, gives an account of how manager Billy Beane transforms the team’s performance, despite having the lowest payroll in the major leagues.
Moneyball tells the tale of an underdog's rise to glory using data analytics, now a multimillion-dollar industry that has revolutionized sports. More recently, data analytics is proving its worth once again, this time within the investment management industry. Behavioral data analytics is helping portfolio managers to fine-tune their decision-making process, giving them a vital competitive advantage. This is done with the help of machine-learning algorithms that can analyze large data sets of historical investment data to detect behavioral patterns that are either adding or destroying value within a portfolio.
Why investment managers need to up their game
Following a surge in the popularity of low-fee index funds, the active management industry has been feeling the pressure. To justify the fees that investment managers charge, they must outperform the index net of fees — i.e., they must earn the same return as the index plus the cost of the fees they charge.
This is where behavioral data analytics can help. Decision-making in such a high-stake industry can have huge monetary consequences. By treating the decision-making process of PMs (portfolio managers) as a set of skills that can be analyzed and refined, data analytics can aid behavior change to boost a portfolio’s “behavioral alpha” — the excess investment return that results from mitigating the cognitive biases hidden in the investor’s decision-making process. This combination of behavioral science and data analytics can pinpoint value-destroying behavior and provide portfolio managers with the information and tools needed to enhance their decision-making process.
References
What is Behavioral Alpha? (n.d.). Essentia Analytics. https://www.essentia-analytics.com/about-essentia/behavioral-alpha/
Kahneman, D. (2012). Thinking, Fast and Slow. Farrar, Straus and Giroux.
Kahneman, D., & Tversky, A. (1979). Prospect Theory: An analysis of decision under risk. Econometra, 49.
Woodcock, C. (n.d.). What's in a Nudge. Essentia Analytics. https://www.essentia-analytics.com/whats-in-a-nudge/
About the Author
Eva McCarthy
Eva holds a Bachelor of Science Mathematics degree and is currently undertaking a Master's in Cognitive and Decision Science at University College London. She is a committee member for UCL’s Behavioral Innovations Society, a student community of behavioral scientists that aims to deliver positive and sustainable behavior change within UCL and beyond. She also works for Essentia Analytics, a behavioral data analytics service that helps investment managers make measurably better investment decisions. Standing at the precipice of major technological upheaval she believes it is essential to apply behavioral science research to new technological advancements.
About us
We are the leading applied research & innovation consultancy
Our insights are leveraged by the most ambitious organizations
“
I was blown away with their application and translation of behavioral science into practice. They took a very complex ecosystem and created a series of interventions using an innovative mix of the latest research and creative client co-creation. I was so impressed at the final product they created, which was hugely comprehensive despite the large scope of the client being of the world's most far-reaching and best known consumer brands. I'm excited to see what we can create together in the future.
Heather McKee
BEHAVIORAL SCIENTIST
GLOBAL COFFEEHOUSE CHAIN PROJECT
OUR CLIENT SUCCESS
$0M
Annual Revenue Increase
By launching a behavioral science practice at the core of the organization, we helped one of the largest insurers in North America realize $30M increase in annual revenue.
0%
Increase in Monthly Users
By redesigning North America's first national digital platform for mental health, we achieved a 52% lift in monthly users and an 83% improvement on clinical assessment.
0%
Reduction In Design Time
By designing a new process and getting buy-in from the C-Suite team, we helped one of the largest smartphone manufacturers in the world reduce software design time by 75%.
0%
Reduction in Client Drop-Off
By implementing targeted nudges based on proactive interventions, we reduced drop-off rates for 450,000 clients belonging to USA's oldest debt consolidation organizations by 46%