Behavioral Science and the Future of Agriculture
While sectors in different areas are diminishing, one industry that will continue to grow is agriculture. We all need to eat, and the demands on agriculture are increasing at a steady pace. A global population of 9.8 billion is predicted by 2050, and experts predict overall food demand and animal-based food demand to increase by more than 50 percent and 70 percent, respectively.1,2
Canada is specifically impacted by this demand, being one of the world’s largest agricultural exporters. The Canadian government has set its sights on growing its agri-food exports to at least $75 billion annually by 2025.3 While the demand for food increases, so does the need for sustainable practices, as agriculture and related land-use change generate one quarter of annual greenhouse gas (GHG) emissions.2
Solutions are being developed to help solve these problems. The agriculture technology industry, abbreviated as “agtech,” is becoming more populated and diverse. Experts believe agtech will become a $730 billion (USD) industry worldwide by 2023,17 and Canada is not behind in contributing to the startup sector. The Vancouver-based Terramera believes their pest control technology could reduce synthetic pesticides by 80% and increase crop yields by 20% globally.4 Decisive Farming, an agtech startup headquartered in Irricana, Alberta, offers a platform that streamlines farming processes and optimizes production. And Calgary’s Verge Ag uses land data and artificial intelligence to create specialized GPS paths that machinery can follow to work on behalf of farmers.5 These technologies, and others, have the potential to revolutionize the agriculture industry.
Despite the promise of agtech, the adoption of many of these new tools has been slow. Behavioral science might offer a solution to this problem, shining a light on the reasons why some technologies haven’t caught on and providing interventions to fix that.
Before talking about the role of behavioral science in agriculture, though, let’s take a look at two significant categories in agtech: Precision agriculture, and automation and artificial intelligence
References
- Manhas, K. (2019, February 25). Why the agtech boom isn’t your typical tech disruption. World Economic Forum. https://www.weforum.org/agenda/2019/02/why-the-agtech-boom-isn-t-your-typical-tech-disruption/
- Searchinger, T. (2019, July). World Resources Report: Creating a Sustainable Food Future | WRI. https://research.wri.org/wrr-food
- Agtech: A Billion-Dollar Opportunity? (2019, January 31). GLOBE Series. https://www.globeseries.com/blog/2019/01/31/agtech-a-billion-dollar-opportunity/
- Nanalyze. (2019, September 4). 8 Canadian Agtech Startups Helping Farmers Grow. Nanalyze. https://www.nanalyze.com/2019/09/canadian-agtech-farmers-grow/
- Calgary Economic Development. (2020, October 8). Agtech: Creating the agriculture industry of tomorrow. Calgary Economic Development. https://calgaryeconomicdevelopment.com/newsroom/agtech-creating-the-agriculture-industry-of-tomorrow/
- van der Wal, T. (2019). Why is adoption of precision ag so slow? https://www.futurefarming.com/Smart-farmers/Articles/2019/1/Why-is-adoption-of-precision-ag-so-slow-385338E/
- Magnin, C. (2016, August 19). How big data will revolutionize the global food chain | McKinsey. https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/how-big-data-will-revolutionize-the-global-food-chain#
- Gebrehiwot, T., van der Veen, A. Farmers Prone to Drought Risk: Why Some Farmers Undertake Farm-Level Risk-Reduction Measures While Others Not? Environmental Management 55, 588–602 (2015).
- Claver, H. (2020). Research sheds light on farmers’ reluctance to adopt tech. https://www.futurefarming.com/Smart-farmers/Articles/2020/10/Research-sheds-ligt-on-farmers-reluctance-to-adopt-technology-650122E/
- Agtech So What? (2020, March 25). Ep63 Evan Fraser on 3 barriers to agtech adoption and impacts of COVID-19 on agriculture—AgTech So What Podcast. https://www.agtechsowhat.com/agtechsowhatepisodes/2020/3/25/ep63-evan-fraser-on-3-barriers-to-agtech-adoption-and-covid-19-impacts-on-agriculture
- Aubert, B. A., Schroeder, A., & Grimaudo, J. (2012). IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decision Support Systems, 54(1), 510–520. https://doi.org/10.1016/j.dss.2012.07.002
- David Christian Rose, Connor Keating, and Carol Morris. (2018). Understanding how to influence farmers’ decision-making behavior. Retrieved October 17, 2020, from https://projectblue.blob.core.windows.net/media/Default/Imported%20Publication%20Docs/FarmersDecisionMaking_2018_09_18.pdf
- Dimova, M., Guichon, D., & Stern, M. (2016, March 29). Understanding (and Improving) Some Rules of Thumb in Agriculture. Ideas42. https://www.ideas42.org/blog/understanding-improving-rules-thumb-agriculture/
- Mankad, A. (2016). Psychological influences on biosecurity control and farmer decision-making. A review. Agronomy for Sustainable Development, 36(2), 40. https://doi.org/10.1007/s13593-016-0375-9
- Milotich, M. (2014, February 26). Dissonance, Decision-Making, and Relationships. Claxus. https://claxus.com/articles/dissonance-decision-making-and-relationships/
- Rose, D. C., Sutherland, W. J., Parker, C., Lobley, M., Winter, M., Morris, C., Twining, S., Ffoulkes, C., Amano, T., & Dicks, L. V. (2016). Decision support tools for agriculture: Towards effective design and delivery. Agricultural Systems, 149, 165–174. https://doi.org/10.1016/j.agsy.2016.09.009
- Nolet, S., & Pryor, M. (2020, November 9). Australia risks missing out on $700b agrifood tech industry. Australian Financial Review. https://www.afr.com/technology/australia-risks-missing-out-on-700b-agrifood-tech-industry-20201108-p56cma
- Walch, K. (2019, July 5). How AI Is Transforming Agriculture. Forbes. https://www.forbes.com/sites/cognitiveworld/2019/07/05/how-ai-is-transforming-agriculture/?sh=58f361c24ad1
- Paustian, M., & Theuvsen, L. (2017). Adoption of precision agriculture technologies by German crop farmers. Precision agriculture, 18(5), 701-716.
About the Author
Kaylee Somerville
Kaylee is a research and teaching assistant at the University of Calgary in the areas of finance, entrepreneurship, and workplace harassment. Holding international experience in events, marketing, and consulting, Kaylee hopes to use behavioral research to help individuals at work. She is particularly interested in the topics of gender, leadership, and productivity. Kaylee completed her Bachelor of Commerce degree from the Haskayne School of Business at the University of Calgary.
About us
We are the leading applied research & innovation consultancy
Our insights are leveraged by the most ambitious organizations
“
I was blown away with their application and translation of behavioral science into practice. They took a very complex ecosystem and created a series of interventions using an innovative mix of the latest research and creative client co-creation. I was so impressed at the final product they created, which was hugely comprehensive despite the large scope of the client being of the world's most far-reaching and best known consumer brands. I'm excited to see what we can create together in the future.
Heather McKee
BEHAVIORAL SCIENTIST
GLOBAL COFFEEHOUSE CHAIN PROJECT
OUR CLIENT SUCCESS
$0M
Annual Revenue Increase
By launching a behavioral science practice at the core of the organization, we helped one of the largest insurers in North America realize $30M increase in annual revenue.
0%
Increase in Monthly Users
By redesigning North America's first national digital platform for mental health, we achieved a 52% lift in monthly users and an 83% improvement on clinical assessment.
0%
Reduction In Design Time
By designing a new process and getting buy-in from the C-Suite team, we helped one of the largest smartphone manufacturers in the world reduce software design time by 75%.
0%
Reduction in Client Drop-Off
By implementing targeted nudges based on proactive interventions, we reduced drop-off rates for 450,000 clients belonging to USA's oldest debt consolidation organizations by 46%