Glasses rest on a laptop keyboard, with computer screens displaying colorful programming code and software interfaces in the background, giving a blurred effect through the lenses.

Algorithms for Simpler Decision-Making (2/2)

read time - icon

0 min read

Oct 23, 2018

Algorithms have been designed as linear, rational agents for the purpose of optimizing decisions in the face of risk. Unquestionably, this design is capable of consistently analyzing mass quantities of data with probabilistic accuracy that the human brain simply cannot fathom. However, this utilitarian approach to decision-making differs from that of human decision-makers on a fundamental level. As Hafenbrädl, Waeger, Marewski, & Gigerenzer (2016) explain, algorithmic decisions are made in a different world, the small world of risk, than real-world, human decisions, which take place in the big world of uncertainty. In the world of risk, probabilities, alternatives, and consequences can be readily calculated, weighed, and considered; and we must wrestle our intuitive impulses into submission for rational optimization. In the world of uncertainty, probabilities, consequences, and alternatives are unknowable or incalculable; and our intuitive heuristics are integral to satisficing under time and resource constraints (Hafenbrädl et al., 2016; Simon, 1956).

These contrasting characteristics delineate two views of decision-making — traditional rational theory and nonrational theory[1]. Traditional rationality suggests a good decision is made by considering all decision alternatives and accompanying consequences, estimating and multiplying the subjective probability by the expected utility of each consequence, and then selecting the option with the greatest expected utility. But for human decision-makers in uncertain environments, this process is psychologically unrealistic (Gigerenzer, 2001). Instead of viewing humans as omniscient beings, nonrational theories, such as bounded rationality, illustrate a decision-making process in which the environment is marked by limited time, resources, and information; where rational optimization is unfeasible and unwise. While traditional rationality entices with a sense of reasonableness, applied real-world decision-making naturally abides by the principles of nonrationality. So, when standard rational algorithms are advertised as aids to human decision-makers, a false assumption of compatibility between intrinsically different decision strategies is made. Algorithm aversion, directly and indirectly, can be traced back to this assumption.

Due to their probabilistic focus, standard algorithmic decision aids confront human cognition head on — you either accept or reject the algorithmic insight; all or nothing. Because these algorithms perform a process of rational optimization, opportunities for integrating with human nonrationality are sparse. In the predominant consumer model of algorithmic decision-making, this mismatch of rationality and nonrationality manifests as an interaction where a human decision-maker performs an intuitive calculation, consults the algorithm’s calculation, and then must choose a course of action with or without regard to the algorithmic advice. Needless to say, very little interaction occurs in this model as intuitive and statistical judgment are pitted against one another — a psychological tug-o’-war dominated by intuition time and again.

To design cognitive prosthetics capable of linking the human mind to normally incomprehensible data flows, enabling better decision-making, nonrationality must be the founding principle. Meeting human decision-makers in the world of uncertainty, where decisions must be made with limited time (fast) and with limited information (frugal), the application of the fast-and-frugal framework to the design of algorithms is a contemporary case of mobilizing nonrational theory for cohesive human-algorithm decision systems (Phillips, Neth, Woike, & Gaissmaier, 2017). While not without limitations, this move to structure heuristic-led algorithms allows human decision-makers and algorithms to share the step-by-step gathering, ordering, and evaluating of available data and ultimately arrive at a single, joint conclusion. In doing so, human-algorithm cognition is meshed upstream in the decision process permitting a more participatory, less confrontational augmentation experience.

This integration of algorithmic statistical rigor with humanly heuristic-led sensibility is an evidently difficult task that calls for a multidisciplinary community. As the discourse flounders between the abstract and the pragmatic, it is important to consider what we want, expect, and demand from our decision-makers and our decision-making algorithms.

References

Beer, D. (2017). The social power of algorithms. Information Communication and Society, 20(1), 1–13. https://doi.org/10.1080/1369118X.2016.1216147

Beer, D. (2017). The social power of algorithms. Information Communication and Society, 20(1), 1–13. https://doi.org/10.1080/1369118X.2016.1216147

Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm Aversion: People Erroneously Avoid Algorithms after Seeing Them Err. Journal of Experimental Psychology: General, 144(1), 114–126. https://doi.org/10.1037/xge0000033

Dietvorst, B. J., Simmons, J. P., & Massey, C. (2016). Overcoming Algorithm Aversion: People Will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them. Management Science, 64(3), 1155–1170. https://doi.org/10.1287/mnsc.2016.2643

Gigerenzer, G. (2001). Decision Making: Nonrational Theories. International Encyclopedia of the Social and Behavioral Sciences, 5, 3304–3309. https://doi.org/10.1016/B978-0-08-097086-8.26017-0

Hafenbrädl, S., Waeger, D., Marewski, J. N., & Gigerenzer, G. (2016). Applied Decision Making With Fast-and-Frugal Heuristics. Journal of Applied Research in Memory and Cognition, 5, 215–231. https://doi.org/10.1016/j.jarmac.2016.04.011

Lee, M. K., Kusbit, D., Metsky, E., & Dabbish, L. (2015). Working with Machines: The Impact of Algorithmic and Data-Driven Management on Human Workers. Proceedings of the ACM CHI’15 Conference on Human Factors in Computing Systems, 1, 1603–1612. https://doi.org/10.1145/2702123.2702548

Meehl, P. E. (1954). Clinical vs. Statistical Prediction: A Theoretical Analysis and a Review of the Evidence.

Phillips, N. D., Neth, H., Woike, J. K., & Gaissmaier, W. (2017). FFTrees: A toolbox to create, visualize, and evaluate fast-and-frugal decision trees. Judgment and Decision Making, 12(4), 344–368. Retrieved from https://journal.sjdm.org/17/17217/jdm17217.pdf

Prahl, A., & Van Swol, L. (2017). Understanding algorithm aversion: When is advice from automation discounted? Journal of Forecasting, 36, 691–702. https://doi.org/10.1002/for.2464

Simon, H. (1956). Rational choice and the structure of the environment. Psychological Review, 63, 129–138.

About the Author

A man in a dark jacket smiles while standing outdoors, surrounded by green hills and a misty, overcast sky. A body of water and more hills are visible in the background.

Jason Burton

Birkbeck, University of London

Jason is a PhD researcher at the Centre for Cognition, Computation & Modelling (CCCM) at Birkbeck, University of London. Before joining Birkbeck, he earned an MSc in Organisational Psychiatry & Psychology from King’s College London and held a research position at Copenhagen Business School’s Department of Digitalization. His research seeks to further our understandings of how cognitive processes intersect with the post-truth environment, ultimately revolving around the topic of human rationality. Outside of academia, Jason works with HATCH Analytics as a research psychologist to apply behavioural insights in the workplace.

About us

We are the leading applied research & innovation consultancy

Our insights are leveraged by the most ambitious organizations

Image

I was blown away with their application and translation of behavioral science into practice. They took a very complex ecosystem and created a series of interventions using an innovative mix of the latest research and creative client co-creation. I was so impressed at the final product they created, which was hugely comprehensive despite the large scope of the client being of the world's most far-reaching and best known consumer brands. I'm excited to see what we can create together in the future.

Heather McKee

BEHAVIORAL SCIENTIST

GLOBAL COFFEEHOUSE CHAIN PROJECT

OUR CLIENT SUCCESS

$0M

Annual Revenue Increase

By launching a behavioral science practice at the core of the organization, we helped one of the largest insurers in North America realize $30M increase in annual revenue.

0%

Increase in Monthly Users

By redesigning North America's first national digital platform for mental health, we achieved a 52% lift in monthly users and an 83% improvement on clinical assessment.

0%

Reduction In Design Time

By designing a new process and getting buy-in from the C-Suite team, we helped one of the largest smartphone manufacturers in the world reduce software design time by 75%.

0%

Reduction in Client Drop-Off

By implementing targeted nudges based on proactive interventions, we reduced drop-off rates for 450,000 clients belonging to USA's oldest debt consolidation organizations by 46%

Read Next

Notes illustration

Eager to learn about how behavioral science can help your organization?