Algorithms for Simpler Decision-Making (1/2): The Case for Cognitive Prosthetics
Our cognitive functions are increasingly being outsourced to computational algorithms, simultaneously enhancing our decision-making capabilities and manipulating our behavior. Digital spaces, where information is more accessible and more affordable than ever before, provide us with insights and data for us to use at will. Nowadays, a simple Google search can take on the role of financial advisor, lawyer, or even doctor. But the information we find online is silently sorted, ordered and presented by algorithms that delve through our digital data traces for the most relevant, most ‘likable’ media to feed us. In many ways, this unseen curation is a welcome convenience; sifting through and reasoning with seemingly endless online data and information is an unrealistic task for any human. Nevertheless, we begin to forfeit cognitive autonomy each time we delegate information gathering and evaluation to algorithms, in turn restricting our thinking to what the algorithms deem appropriate.
Interacting with these algorithms allows us to make sense of and participate in the flows of data constantly constructing the ways we work and live. Algorithmic decision-making— that is, automated analytics deployed for the purpose of informing better, data-driven decisions — epitomizes this phenomenon. And while a world directed by algorithms presents countless opportunities for optimizing the human experience, it also calls for reflection on the human-algorithm relationship upon which we now rely.
As our views on data shift from empiricism to ideology, from datafication to dataism, it is easy to get caught in the fervor. Countless articles call for transparency, accountability, and privacy in the roll out of algorithmic practices. These are of course noble (and often necessary) ideals — for example, data watchdog committees and legislative safeguards can ensure responsible development and implementation. Yet, many of these sweeping calls for oversight implicitly rest on unfounded assumptions about the socio-political impacts of algorithms. In turn, we wind up with a number of a priori hypotheses about how algorithms will affect society — and thus, claims about the steps we must take to regulate them — which are often premised on misguided assumptions.
For one, the conventional data dogma has warped and distorted the concept of the algorithm into some kind of agential, all-knowing, impossible-to-comprehend being. This misconception suggests that an algorithm possesses authoritative power in itself, when in reality any influence the algorithm may project is the result of human design and legitimization (Beer, 2017). In other words, as the role of algorithms evolves to a semi-mythical (perhaps deified) status from Silicon Valley to Wall Street, it is often forgotten that algorithms are a product of human effort, and subject to human control.
References
Beer, D. (2017). The social power of algorithms. Information Communication and Society, 20(1), 1–13. https://doi.org/10.1080/1369118X.2016.1216147
Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, (January), 7–19.
Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm Aversion: People Erroneously Avoid Algorithms after Seeing Them Err. Journal of Experimental Psychology: General, 144(1), 114–126. https://doi.org/10.1037/xge0000033
Dietvorst, B. J., Simmons, J. P., & Massey, C. (2016). Overcoming Algorithm Aversion: People Will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them. Management Science, 64(3), 1155–1170. https://doi.org/10.1287/mnsc.2016.2643
Gigerenzer, G. (2001). Decision Making: Nonrational Theories. International Encyclopedia of the Social and Behavioral Sciences, 5, 3304–3309. https://doi.org/10.1016/B978-0-08-097086-8.26017-0
Hafenbrädl, S., Waeger, D., Marewski, J. N., & Gigerenzer, G. (2016). Applied Decision Making With Fast-and-Frugal Heuristics. Journal of Applied Research in Memory and Cognition, 5, 215–231. https://doi.org/10.1016/j.jarmac.2016.04.011
Lee, M. K., Kusbit, D., Metsky, E., & Dabbish, L. (2015). Working with Machines: The Impact of Algorithmic and Data-Driven Management on Human Workers. Proceedings of the ACM CHI’15 Conference on Human Factors in Computing Systems, 1, 1603–1612. https://doi.org/10.1145/2702123.2702548
Meehl, P. E. (1954). Clinical vs. Statistical Prediction: A Theoretical Analysis and a Review of the Evidence.
Phillips, N. D., Neth, H., Woike, J. K., & Gaissmaier, W. (2017). FFTrees: A toolbox to create, visualize, and evaluate fast-and-frugal decision trees. Judgment and Decision Making, 12(4), 344–368. Retrieved from https://journal.sjdm.org/17/17217/jdm17217.pdf
Prahl, A., & Van Swol, L. (2017). Understanding algorithm aversion: When is advice from automation discounted? Journal of Forecasting, 36, 691–702. https://doi.org/10.1002/for.2464
Simon, H. (1956). Rational choice and the structure of the environment. Psychological Review, 63, 129–138.
About the Author
Jason Burton
Jason is a PhD researcher at the Centre for Cognition, Computation & Modelling (CCCM) at Birkbeck, University of London. Before joining Birkbeck, he earned an MSc in Organisational Psychiatry & Psychology from King’s College London and held a research position at Copenhagen Business School’s Department of Digitalization. His research seeks to further our understandings of how cognitive processes intersect with the post-truth environment, ultimately revolving around the topic of human rationality. Outside of academia, Jason works with HATCH Analytics as a research psychologist to apply behavioural insights in the workplace.
About us
We are the leading applied research & innovation consultancy
Our insights are leveraged by the most ambitious organizations
“
I was blown away with their application and translation of behavioral science into practice. They took a very complex ecosystem and created a series of interventions using an innovative mix of the latest research and creative client co-creation. I was so impressed at the final product they created, which was hugely comprehensive despite the large scope of the client being of the world's most far-reaching and best known consumer brands. I'm excited to see what we can create together in the future.
Heather McKee
BEHAVIORAL SCIENTIST
GLOBAL COFFEEHOUSE CHAIN PROJECT
OUR CLIENT SUCCESS
$0M
Annual Revenue Increase
By launching a behavioral science practice at the core of the organization, we helped one of the largest insurers in North America realize $30M increase in annual revenue.
0%
Increase in Monthly Users
By redesigning North America's first national digital platform for mental health, we achieved a 52% lift in monthly users and an 83% improvement on clinical assessment.
0%
Reduction In Design Time
By designing a new process and getting buy-in from the C-Suite team, we helped one of the largest smartphone manufacturers in the world reduce software design time by 75%.
0%
Reduction in Client Drop-Off
By implementing targeted nudges based on proactive interventions, we reduced drop-off rates for 450,000 clients belonging to USA's oldest debt consolidation organizations by 46%