Complex Systems

The Basic Idea

Imagine you’re a scientist who studies ants. If you grabbed a magnifying glass and examined an ant’s daily routine, you would conclude that ants are simple creatures. Each day, an ant will decide on a task to fill its time. Whether it be foraging, digging holes, rolling dirt up hills, or any other ant antics they can think of, this individual behavior is often predictable and easy to understand. But what happens when ants interact with each other?

After a few weeks of examining an ant colony, you would be shocked about the efficiency, teamwork, and complex structures that emerge from ants’ collective effort. Ant colonies are capable of performing incredibly complex tasks, ranging from building bridges to farming aphids as livestock. These behaviors are so complex that if you looked at the colony collectively rather than individually, you would see that it characterizes a living organism. Like a living organism, ant colonies have goals, adapt, expand, and have a life cycle. However, there is no “brain” behind this “living system”1.  While it may be hard to imagine, no ant governing body masterminds all of the colony’s actions. By themselves, ants aren’t very smart. They’re only capable of doing very simple tasks. Despite their tiny brains, each day an ant makes a personal decision about what they are going to work on, and what emerges is a living system capable of tasks any individual ant couldn’t even dream of. How does this happen?

Complex systems are networks of small parts which interact to produce something that could not be predicted by analyzing any one individual part by itself. The general idea of a complex system is encapsulated by the common saying “the whole is greater than the sum of its parts”. While they are typically difficult to predict, the products of a complex system often result in broader trends that are observable over time.

Typically, these complex systems are built with 3 building blocks:2

  1. They are composed of a number of different actors who make their own decisions.
  2. These agents interact with each other.
  3. The system produces something greater than the sum of its parts.

While this may seem abstract, complex systems are everywhere if you know how to find them. Because they are so prevalent, complexity has gone from a niche academic idea to a key facet of several academic disciplines. The academic reach of complex systems is also vast: economics, education, biology, meteorology, urban planning, physics, mathematics, and many other fields have integrated its models. From something as small as your immune system to something as global as capital markets, complex systems are constantly operating around the world.

Out of intense complexities, intense simplicities emerge.


– Winston Churchill

About us

We are the leading applied research & innovation consultancy

Our insights are leveraged by the most ambitious organizations

Image

I was blown away with their application and translation of behavioral science into practice. They took a very complex ecosystem and created a series of interventions using an innovative mix of the latest research and creative client co-creation. I was so impressed at the final product they created, which was hugely comprehensive despite the large scope of the client being of the world's most far-reaching and best known consumer brands. I'm excited to see what we can create together in the future.

Heather McKee

BEHAVIORAL SCIENTIST

GLOBAL COFFEEHOUSE CHAIN PROJECT

OUR CLIENT SUCCESS

$0M

Annual Revenue Increase

By launching a behavioral science practice at the core of the organization, we helped one of the largest insurers in North America realize $30M increase in annual revenue.

0%

Increase in Monthly Users

By redesigning North America's first national digital platform for mental health, we achieved a 52% lift in monthly users and an 83% improvement on clinical assessment.

0%

Reduction In Design Time

By designing a new process and getting buy-in from the C-Suite team, we helped one of the largest smartphone manufacturers in the world reduce software design time by 75%.

0%

Reduction in Client Drop-Off

By implementing targeted nudges based on proactive interventions, we reduced drop-off rates for 450,000 clients belonging to USA's oldest debt consolidation organizations by 46%

Read Next

Notes illustration

Eager to learn about how behavioral science can help your organization?