Bayesian Network

The Basic Idea

Uncertainty is a fact of life. However, the existence of uncertainty does not mean we can’t make any predictions about cause and effect relationships. Probability theory suggests that although we cannot be certain about a single outcome of a random event, we can predict the probability of a number of possible outcomes.1 Probability theory is about making informed inferences in the face of uncertainty.

A Bayesian network is a probabilistic graphical model. It is used to model the unknown based on the concept of probability theory. Bayesian networks show a relationship between nodes - which represent variables - and outcomes, by determining whether variables are dependent or independent. A Bayesian network works backwards, by looking at an event and suggesting possible variables that led to it. In other words, a Bayesian network provides information about probabilities regarding causes and effects of events.

For example, if you were to observe that the grass is wet, you might ask, “What is the probability that it is wet because it is raining?” To figure out the probability, you would have to calculate how often the cause of wet grass is rain, which also means knowing how often the grass is wet for a different reason (such as the sprinkler being turned on). Since the sprinkler being turned on is also dependent on whether or not it rains, a Bayesian network would map out the various conditional variables and respective probabilities.2

Under Bayes’ theorem, no theory is perfect. Rather, it is a work in progress, always subject to further refinement and testing.


– American statistician Nate Silver3

About us

We are the leading applied research & innovation consultancy

Our insights are leveraged by the most ambitious organizations

Image

I was blown away with their application and translation of behavioral science into practice. They took a very complex ecosystem and created a series of interventions using an innovative mix of the latest research and creative client co-creation. I was so impressed at the final product they created, which was hugely comprehensive despite the large scope of the client being of the world's most far-reaching and best known consumer brands. I'm excited to see what we can create together in the future.

Heather McKee

BEHAVIORAL SCIENTIST

GLOBAL COFFEEHOUSE CHAIN PROJECT

OUR CLIENT SUCCESS

$0M

Annual Revenue Increase

By launching a behavioral science practice at the core of the organization, we helped one of the largest insurers in North America realize $30M increase in annual revenue.

0%

Increase in Monthly Users

By redesigning North America's first national digital platform for mental health, we achieved a 52% lift in monthly users and an 83% improvement on clinical assessment.

0%

Reduction In Design Time

By designing a new process and getting buy-in from the C-Suite team, we helped one of the largest smartphone manufacturers in the world reduce software design time by 75%.

0%

Reduction in Client Drop-Off

By implementing targeted nudges based on proactive interventions, we reduced drop-off rates for 450,000 clients belonging to USA's oldest debt consolidation organizations by 46%

Read Next

Notes illustration

Eager to learn about how behavioral science can help your organization?