Big Ben

Government Nudging in the Age of Big Data

read time - icon

0 min read

Nov 21, 2017

Nudging is a science, and its practitioners are scientists. More specifically, it is a type of applied science; taking results recorded in laboratories and field experiments, and applying them to the real world. For policy-makers, this is an enormously valuable tool — policy decisions can be backed up by hard evidence, recorded time and time again by researchers across the world.

However, the transition from psychology journals into the real world is not always easy. Seeing which nudges actually work is a process of trial and error — recording the data, looking at the outcomes, and adjusting policies accordingly. In fact, one criticism of changing behavior through nudging is that these results are too context-specific and cannot easily be replicated in different environments.

To its credit, ‘trial and error’ nudging has worked very well. It has been used successfully by governments all over the world; from tax-collection to urinals, nudging has provided behavioral solutions to social problems.

Thanks to data science, however, the future of government nudging looks quite different. Every year, the behavioral Insights Team (BIT) — Britain’s government department for behavioral science — releases a report, reviewing how behavioral insights have been used in British policy. This year, there was a crucial inclusion: the BIT has recently added a Data Science team, which aims to use the latest methods from data science, machine learning and predictive analytics to make smarter policy implementations.

This is hardly surprising; given the rise in popularity and application of both data science and behavioral science, combining the two seems to be the next logical step. In fact, sophisticated data analytics have the potential not only to improve behavioral insights, but to transform how governments interact with their citizens.

Take machine learning, for example. Simply put, machine learning consists in modelling an algorithm to find patterns in very large datasets. These algorithms consolidate information and adapt to become increasingly sophisticated and accurate, allowing them to learn automatically without being explicitly programmed.  

The BIT’s application of these techniques has been fairly modest, but the results are hugely promising. The first major trial has involved trying to solve a road traffic problem in East Sussex, a small county on the south coast of the UK. For whatever reason, East Sussex has a disproportionately high number of fatal traffic collisions (64% higher than the national average). Faced with this problem, the local council has implemented a number of road safety initiatives to try to reduce speeding, encourage concentration at the wheel, and provide road users with information promoting safer driving.

Last year, the BIT tried to solve this problem with data science. Algorithms based on over ten years of collected local data allowed the BIT to make extremely accurate predictions about which types of drivers would be more likely to be involved in serious traffic accidents. For example, they found that a collision between a person over 65 and a younger driver is more likely to result in a fatality if the ‘younger’ driver is aged 40–50. After all, previously unnoticeable behavioral patterns like these can be found in large enough data sets. Most importantly, this allowed the BIT to better design and target road safety initiatives — to provide the right behavioral interventions for the right people.

Right now, these models have only been applied to small-scale road safety initiatives, but their potential to solve major social problems is clear. The amount of data we amass, individually and as a society, is staggering: in fact, we generate more collected data every two days than we did in the entire history of the universe until 2003. All of our online interactions, our purchase histories, our medical records, our government information — it all leaves a digital footprint. When datasets are so large, behavioral predictions can be startlingly accurate. Michal Kosinski has already used digital footprints left behind while using online platforms and devices to study, and anticipate, human behavior and psychological traits. His models have been able to predict people’s psychological traits, behavior, sexuality, and even who they will vote for.

How does this relate to better policy-making? As the BIT showed, instead of applying and re-applying nudges as ‘best-guesses’, governments can tailor very specific, personalised behavioral nudges to individuals and small groups. If Kosinski and his team can make extremely accurate predictions about an individual’s private preferences based on a fairly limited amount of social media data, imagine how accurately governments could design and target the right behavioral nudges.

References

[1] The Behavioral Insights Team. (2017). The Behavioral Insights Team Update Report 2016-17. Retrieved from:
https://38r8om2xjhhl25mw24492dir.wpengine.netdna-cdn.com/wp-content/uploads/2017/10/BIT_Update-16-17_E_.pdf

[2] R. B. Cialdini, A. Levy, C. P. Herman, L. T. Kozlowski & R. E. Petty. (1976). Elastic shifts of opinion: Determinants of direction and durability. Journal of Personality and Social Psychology, 34(4), 663-672. Retrieved from:
https://dx.doi.org/10.1037/0022-3514.34.4.663

[3] J. Guszcza. (2015). The last-mile problem: How data science and behavioral science can work together. Deloitte Review, 16. Retrieved from: https://dupress.deloitte.com/dup-us-en/deloitte-review/issue-16/behavioral-economics-predictive-analytics.html

[4] M. Kosinski, D. Stillwel & T. Graepel. (2013). Private traits and attributes are predictable from digital records of human behavior. PNAS, 110(1), 5802-5805. Retrieved from: https://www.pnas.org/content/110/15/5802.full.pdf

[5] Y. Wang & M. Kosinski. (2017). Deep neural networks are more accurate than humans at detecting sexual orientation from facial images. Retrieved from: osf.io/zn79k

About the Author

A man stands smiling, wearing a light blue shirt and black shorts, in front of ancient ruins with trees and hills in the background, under a partly cloudy sky.

Johnny Hugill

Cambridge

Johnny Hugill is a graduate student in Philosophy from the University of Cambridge. His research interests include promoting trust, cooperation and social capital through public policy. He is currently co-editing a research project with the Wilberforce Society, investigating how behavioral insights can be used to promote gender equality.

About us

We are the leading applied research & innovation consultancy

Our insights are leveraged by the most ambitious organizations

Image

I was blown away with their application and translation of behavioral science into practice. They took a very complex ecosystem and created a series of interventions using an innovative mix of the latest research and creative client co-creation. I was so impressed at the final product they created, which was hugely comprehensive despite the large scope of the client being of the world's most far-reaching and best known consumer brands. I'm excited to see what we can create together in the future.

Heather McKee

BEHAVIORAL SCIENTIST

GLOBAL COFFEEHOUSE CHAIN PROJECT

OUR CLIENT SUCCESS

$0M

Annual Revenue Increase

By launching a behavioral science practice at the core of the organization, we helped one of the largest insurers in North America realize $30M increase in annual revenue.

0%

Increase in Monthly Users

By redesigning North America's first national digital platform for mental health, we achieved a 52% lift in monthly users and an 83% improvement on clinical assessment.

0%

Reduction In Design Time

By designing a new process and getting buy-in from the C-Suite team, we helped one of the largest smartphone manufacturers in the world reduce software design time by 75%.

0%

Reduction in Client Drop-Off

By implementing targeted nudges based on proactive interventions, we reduced drop-off rates for 450,000 clients belonging to USA's oldest debt consolidation organizations by 46%

Read Next

Notes illustration

Eager to learn about how behavioral science can help your organization?