A group of people operates numerous computer monitors at workstations in a control room with wall-mounted screens displaying data and images.

Humans and AI: Rivals or Romance?

read time - icon

0 min read

Oct 25, 2017

Artificial intelligence (AI) has been developing at a frightening pace. It is debatable to what extent it has improved our lives – being able to use geolocation and search for the best restaurants or places of interest is great; however, AI is, at the same time, eliminating plenty of jobs, fast. A frequently cited report points out that a staggering 47 per cent of jobs in the US will be automated soon [1]. Another study suggests that 45 per cent of the daily tasks currently done by humans could be automated if current trends continue [2]. These numbers are inconceivable, considering that the worst case of unemployment to be recorded was during the Great Depression, in 1929, where an estimated 25 per cent of the population was out of work.

In our most recent book, we mentioned the case of a CFO at an investment bank. Last year, he was given the task of reducing the size of his staff by 80 per cent because off-the-shelf digital technologies could be doing the jobs that were currently occupied by humans [3]. And, in 2017, we have seen large banks close record numbers of physical branches, making thousands redundant in the process. Judging by this, humans are starting to look like horses before the arrival of automobiles.

The (human) empire strikes back

It’s certain that we will hear more and more alarmist accounts. However, we have seen it before – many times, in fact. Back in 1963, it was J F Kennedy who said, “We have a combination of older workers who have been thrown out of work because of technology and younger people coming in […] too many people are coming into the labor market and too many machines are throwing people out” [4]. Going further back, when the first printed books with illustrations started to appear in the 1470s in Germany, wood engravers protested as they thought they would no longer be needed [5].

But this all begs one question: If technological progress represents a comprehensive threat to humans, then why do we still have jobs left? In fact, many of us are still working, probably much harder than before. The answer: machines and humans excel in different activities. For instance, machines are frequently no match for our human minds, senses and dexterity. For example, even though Amazon’s warehouses are automated, humans are still required to do the actual shelving.

And this doesn’t only apply to physical jobs. The real story behind today’s AI is that it cannot function without humans in the loop. Google is thought to have 10,000 ‘raters’ who look at YouTube videos or test new services. Microsoft, on the other hand, has a crowdsourcing platform called Universal Human Relevance System to handle a great deal of small activities, including checking the results of its search algorithms [6]. And this blend of AI and humans, who follow through when the AI falls short, is not going to disappear any time soon [7]. Indeed, the demand for such on-demand human interventions is expected to continue to grow. The ‘human cloud’ is set to boom.

Closer together

The above illustrates a very important lesson – humans will be needed. The key is how to integrate humans and machines in various activities and how to steer AI towards the creation of new economic interfaces, rather than towards the mere replacement/displacement of existing ones. At the moment, the probability of AI getting things right is between 85 and 95 per cent. Humans, on the other hand, generally score 60 to 70 per cent. On this basis alone, we need only machines and not humans.

The AI Governance Challenge book
eBook

The AI Governance Challenge

Yet, in some highly data-driven industries such as financial and legal services, there can be no error – any mistake can result in huge financial costs in the form of economic losses or expensive lawsuits. Machines by themselves are not enough. Furthermore, AI can only run an algorithm that is predefined and trained by a human, and so a margin of error will always exist. When mistakes take place, AI will not be able to fix them. Humans, by contrast, are able to create solutions to problems. We believe that the best solution is to use machines to run production up to the level of 95 per cent accuracy, and supplement this with human engineers to mitigate risks if not to strive to improve accuracy.

Humans and machines will – and must – work together. As business consultants, educators and policy advisors, we all strongly believe that, ultimately, what really matters is how to prepare people to work increasingly closely with machines.

References

[1] Frey, Carl Benedikt and Osborne, Michael. The Future of Employment: How susceptible are jobs to computerisation? Oxford Martin School, 2013. https://www.oxfordmartin.ox.ac.uk/publications/view/1314

[2] Chui, Michael, Manyika, James, and Miremadi, Mehdi. How Many of Your Daily Tasks Could Be Automated?, Harvard Business Review, 14 December 2015. (https://hbr.org/2015/12/how-many-of-your-daily-tasks-could-be-automated)

[3] Tse, Terence and Esposito, Mark. Understanding How the Future Unfolds: Using Drive to Harness the Power of Today’s Megatrends. Lion Crest, 2017.

[4] John F Kennedy interview by Walter Cronkite, 3 September 1963, https://www.youtube.com/watch?v=RsplVYbB7b8

[5] The Economist. Artificial intelligence will create new kinds of work, 26 August 2017. https://www.economist.com/news/business/21727093-humans-will-supply-digital-services-complement-ai-artificial-intelligence-will-create-new

[6] Ibid.

[7] Gray, Mary L. and Suri, Siddharth. “The humans working behind the AI curtain,” Harvard Business Review, 9 January 2017.

About the Authors

A man with glasses is smiling in a portrait-style image. He has short, dark hair, and the background is a plain, light color.

Terence Tse

ESCP Europe Business School

Terence is a co-founder & managing director of Nexus Frontier Tech: An AI Studio. He is also an Associate Professor of Finance at the London campus of ESCP Europe Business School. Terence is the co-author of the bestseller Understanding How the Future Unfolds: Using DRIVE to Harness the Power of Today’s Megatrends. He also wrote Corporate Finance: The Basics.

A man gestures while speaking in a classroom, addressing seated students. A clock, chalkboard, and coat draped over a cabinet are present. Students face the speaker attentively in a well-lit room.

Mark Esposito

Harvard

Mark Esposito is a member of the Teaching Faculty at the Harvard University's Division of Continuing, a Professor of business and economics, with an appointment at Hult International Business School. He is an appointed Research Fellow in the Circular Economy Center, at the University of Cambridge's Judge Busines School. He is also a Fellow for the Mohammed Bin Rashid School of Government in Dubai.

Smiling man with short, dark hair wearing glasses and a brown shirt against a plain, light gray background.

Danny Goh

Oxford

Danny is a serial entrepreneur and an early stage investor. He is the partner and Commercial Director of Nexus Frontier Tech, an AI advisory business with presence in London, Geneva, Boston and Tokyo to assist CEO and board members of different organisations to build innovative businesses taking full advantage of artificial intelligence technology.
 


About us

We are the leading applied research & innovation consultancy

Our insights are leveraged by the most ambitious organizations

Image

I was blown away with their application and translation of behavioral science into practice. They took a very complex ecosystem and created a series of interventions using an innovative mix of the latest research and creative client co-creation. I was so impressed at the final product they created, which was hugely comprehensive despite the large scope of the client being of the world's most far-reaching and best known consumer brands. I'm excited to see what we can create together in the future.

Heather McKee

BEHAVIORAL SCIENTIST

GLOBAL COFFEEHOUSE CHAIN PROJECT

OUR CLIENT SUCCESS

$0M

Annual Revenue Increase

By launching a behavioral science practice at the core of the organization, we helped one of the largest insurers in North America realize $30M increase in annual revenue.

0%

Increase in Monthly Users

By redesigning North America's first national digital platform for mental health, we achieved a 52% lift in monthly users and an 83% improvement on clinical assessment.

0%

Reduction In Design Time

By designing a new process and getting buy-in from the C-Suite team, we helped one of the largest smartphone manufacturers in the world reduce software design time by 75%.

0%

Reduction in Client Drop-Off

By implementing targeted nudges based on proactive interventions, we reduced drop-off rates for 450,000 clients belonging to USA's oldest debt consolidation organizations by 46%

Read Next

A group of people in a modern meeting room, some seated and working at a large table with laptops and cameras, while others stand and converse. The atmosphere is casual, with natural light filtering through large windows in the background.
Insight

Why Teams Make Bad Decisions

Sometimes, the best way to avoid group decision-making failures is not to make decisions as a group at all.

Notes illustration

Eager to learn about how behavioral science can help your organization?